Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway.

Identifieur interne : 001174 ( Main/Exploration ); précédent : 001173; suivant : 001175

Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway.

Auteurs : Keiji Nishida [États-Unis] ; Pamela A. Silver

Source :

RBID : pubmed:22389629

Descripteurs français

English descriptors

Abstract

Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s) that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID) magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1), as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply.

DOI: 10.1371/journal.pbio.1001269
PubMed: 22389629
PubMed Central: PMC3289596


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway.</title>
<author>
<name sortKey="Nishida, Keiji" sort="Nishida, Keiji" uniqKey="Nishida K" first="Keiji" last="Nishida">Keiji Nishida</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Systems Biology, Harvard Medical School and the Wyss Institute of Biological Inspired Engineering, Harvard University, Boston, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Systems Biology, Harvard Medical School and the Wyss Institute of Biological Inspired Engineering, Harvard University, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Silver, Pamela A" sort="Silver, Pamela A" uniqKey="Silver P" first="Pamela A" last="Silver">Pamela A. Silver</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22389629</idno>
<idno type="pmid">22389629</idno>
<idno type="doi">10.1371/journal.pbio.1001269</idno>
<idno type="pmc">PMC3289596</idno>
<idno type="wicri:Area/Main/Corpus">001179</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001179</idno>
<idno type="wicri:Area/Main/Curation">001179</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001179</idno>
<idno type="wicri:Area/Main/Exploration">001179</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway.</title>
<author>
<name sortKey="Nishida, Keiji" sort="Nishida, Keiji" uniqKey="Nishida K" first="Keiji" last="Nishida">Keiji Nishida</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Systems Biology, Harvard Medical School and the Wyss Institute of Biological Inspired Engineering, Harvard University, Boston, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Systems Biology, Harvard Medical School and the Wyss Institute of Biological Inspired Engineering, Harvard University, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Silver, Pamela A" sort="Silver, Pamela A" uniqKey="Silver P" first="Pamela A" last="Silver">Pamela A. Silver</name>
</author>
</analytic>
<series>
<title level="j">PLoS biology</title>
<idno type="eISSN">1545-7885</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cation Transport Proteins (metabolism)</term>
<term>Ferric Compounds (metabolism)</term>
<term>Ferritins (biosynthesis)</term>
<term>Gene Dosage (MeSH)</term>
<term>Gene Knockout Techniques (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Iron-Binding Proteins (genetics)</term>
<term>Iron-Binding Proteins (metabolism)</term>
<term>Magnetic Phenomena (MeSH)</term>
<term>Magnetometry (MeSH)</term>
<term>Mitochondria (enzymology)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>NADP (metabolism)</term>
<term>Organisms, Genetically Modified (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (genetics)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Recombinant Proteins (biosynthesis)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae (ultrastructure)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Composés du fer III (métabolisme)</term>
<term>Dosage génique (MeSH)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Ferritines (biosynthèse)</term>
<term>Humains (MeSH)</term>
<term>Magnétométrie (MeSH)</term>
<term>Mitochondries (enzymologie)</term>
<term>Mitochondries (métabolisme)</term>
<term>NADP (métabolisme)</term>
<term>Organismes génétiquement modifiés (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (génétique)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (métabolisme)</term>
<term>Phénomènes magnétiques (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de liaison au fer (génétique)</term>
<term>Protéines de liaison au fer (métabolisme)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Protéines recombinantes (biosynthèse)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (ultrastructure)</term>
<term>Techniques de knock-out de gènes (MeSH)</term>
<term>Transporteurs de cations (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Ferritins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Iron-Binding Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cation Transport Proteins</term>
<term>Ferric Compounds</term>
<term>Iron-Binding Proteins</term>
<term>Mitochondrial Proteins</term>
<term>NADP</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Ferritines</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison au fer</term>
<term>Protéines mitochondriales</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Composés du fer III</term>
<term>Facteurs de transcription</term>
<term>Mitochondries</term>
<term>NADP</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison au fer</term>
<term>Protéines mitochondriales</term>
<term>Saccharomyces cerevisiae</term>
<term>Transporteurs de cations</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Dosage</term>
<term>Gene Knockout Techniques</term>
<term>Humans</term>
<term>Magnetic Phenomena</term>
<term>Magnetometry</term>
<term>Organisms, Genetically Modified</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Dosage génique</term>
<term>Humains</term>
<term>Magnétométrie</term>
<term>Organismes génétiquement modifiés</term>
<term>Oxydoréduction</term>
<term>Phénomènes magnétiques</term>
<term>Saccharomyces cerevisiae</term>
<term>Techniques de knock-out de gènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s) that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID) magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1), as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22389629</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>06</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1545-7885</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PLoS biology</Title>
<ISOAbbreviation>PLoS Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>e1001269</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pbio.1001269</ELocationID>
<Abstract>
<AbstractText>Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s) that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID) magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1), as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nishida</LastName>
<ForeName>Keiji</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Systems Biology, Harvard Medical School and the Wyss Institute of Biological Inspired Engineering, Harvard University, Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Silver</LastName>
<ForeName>Pamela A</ForeName>
<Initials>PA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Biol</MedlineTA>
<NlmUniqueID>101183755</NlmUniqueID>
<ISSNLinking>1544-9173</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C089360">CCC1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027682">Cation Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005290">Ferric Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033862">Iron-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C485218">Tco89 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C098527">frataxin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63G354M39Z</RegistryNumber>
<NameOfSubstance UI="C025314">ferric citrate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-73-2</RegistryNumber>
<NameOfSubstance UI="D005293">Ferritins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C071570">SNF1-related protein kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.86</RegistryNumber>
<NameOfSubstance UI="C060670">POS5 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>PLoS Biol. 2012;10(2):e1001274</RefSource>
<PMID Version="1">22389631</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nat Methods. 2012 Apr;9(4):330</RefSource>
<PMID Version="1">22563604</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D027682" MajorTopicYN="N">Cation Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005290" MajorTopicYN="N">Ferric Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005293" MajorTopicYN="N">Ferritins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018628" MajorTopicYN="N">Gene Dosage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055786" MajorTopicYN="N">Gene Knockout Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033862" MajorTopicYN="N">Iron-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060328" MajorTopicYN="N">Magnetic Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060306" MajorTopicYN="N">Magnetometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030781" MajorTopicYN="N">Organisms, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>06</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>01</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22389629</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pbio.1001269</ArticleId>
<ArticleId IdType="pii">PBIOLOGY-D-11-02582</ArticleId>
<ArticleId IdType="pmc">PMC3289596</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2008 May 30;320(5880):1207-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 Sep;150(Pt 9):2931-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2003 Feb;31(Pt 1):178-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12546680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1995 Jul;118(1):23-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8537318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Jul 14;411(2-3):373-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9271239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Med. 2008 Jun;59(6):1225-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18506784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ultrastruct Res. 1969 Jan;26(1):31-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4887011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 May;122(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2006 Feb;28(2):157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16435299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 3;276(31):29515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Contrib Microbiol. 2009;16:182-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19494586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jun 13;276(5319):1709-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9180083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Jul 6;49(26):5436-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20536189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 27;280(21):20558-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Apr;17(2):158-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2004 Mar;1012:183-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1980 Mar;141(3):1399-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6245069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Handb Clin Neurol. 2011;100:161-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21496576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Nov 25;280(47):39505-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16183647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5593-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20212111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 1995 Oct 15;67(20):3702-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8644920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1990 Dec 15;96(2):161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2269430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Aug;1800(8):719-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Sep 17;142(6):857-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20817278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Feb;6(2):440-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21776027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Protein Chem. 1947;3:53-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20238587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 6;285(5429):901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jan 4;295(5552):117-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11778045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Aug;28(4):350-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11438811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17648-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18936486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Mar 8;271(5254):1423-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8596916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2009;63:501-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 May;174(9):2748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1314800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 24;270(47):28392-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Imaging. 2009 May-Jun;8(3):129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19723470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 May 18;49(19):4227-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20408527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Jul 24;257(5069):522-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1636086</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Université Harvard</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Silver, Pamela A" sort="Silver, Pamela A" uniqKey="Silver P" first="Pamela A" last="Silver">Pamela A. Silver</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Nishida, Keiji" sort="Nishida, Keiji" uniqKey="Nishida K" first="Keiji" last="Nishida">Keiji Nishida</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001174 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001174 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22389629
   |texte=   Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22389629" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020